Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE in Physics (4PH1)
Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4PH1_1P_msc_20190822
All the material in this publication is copyright
© Pearson Education Ltd 2019

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|}
\hline Question number \& Answer Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) (i) \\
(ii)
\end{tabular} \& C (sound waves);
A is incorrect because it is a transverse wave
B is incorrect because it is a transverse wave
D is incorrect because it is a transverse wave
one mark for each correct line;;
Electromagnetic wave \& \[
2
\] \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
A (checking for broken bones); \\
\(B\) is incorrect because microwaves and infrared have this use C is incorrect because ultraviolet has this use \\
\(D\) is incorrect because alpha radiation has this use \\
B (cooking food); \\
A is incorrect because \(x\)-rays has this use C is incorrect because ultraviolet has this use \\
D is incorrect because gamma has this use
\end{tabular} \& 1

1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
2 (a)	MP1. method to show shape; e.g. use compass(es) use of iron filings / powder MP2. use of plotting compass to show direction; MP3. a further method detail; e.g. move compass / multiple compasses in different positions idea of another line or lines added sprinkle iron filings (on to card) tap card (to distribute iron filings)	all marks may be given from diagram allow if compass seen in diagram pointing in a suitable direction allow equivalent materials to card e.g. paper, plastic etc.	3
(b)	correctly drawn field line patterns for both bar magnets; correctly drawn field line pattern for region between the magnets; at least three field line directions given from north to south;	should show no lines linking south poles not every line needs to have an arrow reject mark if directions contradict 2 marks max. if any lines overlap condone lines touching	3

Question number	Answer	Notes	Marks
3 (a)	gamma is more penetrating (than alpha); (therefore) idea that gamma can pass through the box / fruit;	ignore refences to ionising ability allow RA allow alpha has shorter range (in air) allow RA allow alpha won't reach the box	2
(b)	any two from: MP1.fruit has no bacteria / (all) bacteria on fruit have been killed; MP2. fruit has not been contaminated;	MP3. fruit has not been made radioactive; MP4. radioactive source has not been in contact with the fruit;	allow fruit does not contain any radioactive isotopes allow fruit does not emit radiation

Total for Question 3 = 4 marks

Question number	Answer	Notes	Marks
4 (a) (i)	0.9 (s);		1
(ii)		allow ECF from incorrect time	4
	distance = area (under line);	can be implied from calculation, explicit statement or working on graph itself	
	thinking distance $($ rectangle $)=13.5(\mathrm{~m}) \mathrm{OR}$ braking distance (triangle) $=23.25(\mathrm{~m})$ correctly determined;		
	attempt at calculating area of a trapezium / adding values for areas of rectangle and triangle;		
	(stopping distance $=$) 37 (m);	allow 36.75, 36.7, 36.8	
(iii)	acceleration formula seen in working;	can be implied from substitution	3
	correct substitution into acceleration formula; evaluation of acceleration;	allow ECF from incorrect time found in (a)(i) reject if given as a positive value	
	e.g. (acceleration =) change in velocity \div time	allow ($a=$) $v-u \div t$	
		allow acceleration is gradient condone change in speed \div time	
	$\begin{aligned} & (\text { acceleration }=)(-) 15 / 3.1 \\ & (\text { acceleration }=)-4.8\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	allow any answer that rounds to	
		$\begin{aligned} & -4.8 \\ & \text { allow deceleration }=4.8\left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{aligned}$	
(b)	max. two factors linked to thinking distance:	allow 'reaction time' if no other thinking distance mark achieved ignore factors affecting visibility	4
	MP1.tiredness (of driver); MP2. age (of driver);		
	MP3. alcohol or drug consumption;	e.g. caffeine, medicine etc.	
	MP4. distraction (of driver);	e.g. using a mobile phone etc.	
	max. two factors linked to braking distance:	ignore bald "the weather"	
	MP5. mass / weight of car;	allow however expressed e.g. more people, less luggage etc.	
	MP6. condition of brakes;		
	MP7. condition of road;	e.g. icy road, wet road	
	MP8. condition of tyres;	e.g. how much grip left / eq	
	MP9. slope of road;	e.g. whether the car is going up or downhill	

\begin{tabular}{|c|c|c|}
\hline Question number \& Answer Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii)
\end{tabular} \& \& 1

2

\hline | (b) (i) |
| :--- |
| (ii) | \& | elastic (potential); |
| :--- |
| C (mechanically); |
| A is incorrect because there is no electrical circuit |
| B is incorrect because there is no temperature difference |
| D is incorrect because transfers by radiation do not involve forces | \& 1

1

\hline
\end{tabular}

Total for Question 5 = 5 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 6 (a) \({ }^{(i)}\) \& \begin{tabular}{l}
circuit with symbols for ammeter, voltmeter, lamp, any power supply all correct; \\
voltmeter in parallel with lamp; ammeter in series with lamp; \\
correct means of varying voltage of lamp i.e. variable power supply/rheostat/potentiometer; \\
e.g. \\
any four from: \\
MP1. record ammeter and voltmeter reading; \\
MP2. repeat readings (for each voltage) and find average; \\
MP3. idea of changing the voltage / current;
\end{tabular} \& \begin{tabular}{l}
variable power supplies or variable number of cells can be shown using labelled standard symbols \\
if no lamp in circuit, allow ammeter drawn in series with power supply allow variable resistor in series with lamp \\
allow 'measure voltage and current' allow repeating experiment to find average allow described method that would change voltage or current e.g. adding more cells, changing circuit resistance etc. \\
ignore "let lamp cool between readings"
\end{tabular} \& 4

4

\hline | (b) (i) |
| :--- |
| (ii) |
| (iii) | \& | ampere / amp / A / mA; |
| :--- |
| correctly evaluated energy; given to 2 significant figures; |
| e.g. |
| 162 (J) gets 1 mark |
| 160 (J) gets 2 marks |
| red or orange; | \& | reject I |
| :--- |
| DOP | \& 1

2

1

\hline
\end{tabular}

Total for Question 6 = 12 marks

Question number	Answer	Notes	Marks
7 (a)	waves change \{speed / wavelength / direction\} when they change medium;	allow waves bending allow any reasonable alternative to 'change medium' i.e. changing (optical) density, pass from one material to another etc.	1
(b) (i) (ii) (iii)	straight ray bent towards normal at the air-water boundary; correct angle of refraction by eye; refractive index $=\sin i / \sin r$; substitution; evaluation to at least 3s.f.; e.g. $\begin{aligned} & (n=) \sin 45 / \sin 33 \\ & (n=) 1.30 \end{aligned}$	judge straightness of ray by eye allow rearrangements and standard symbols e.g. $n=\sin i / \sin r$ reject 45/33 reject 1.36 reverse argument scores 1 mark only e.g. calculating i or r using n allow 1.298... condone 1.29	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
(c) \\
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
the angle of incidence (in the slower medium); above which gives total internal reflection OR gives an angle of refraction of \(90^{\circ}\); \\
substitution; \\
rearrangement; \\
evaluation; \\
e.g. \\
\(\sin c=1 / 1.3\) \\
\(\mathrm{c}=\sin ^{-1}(1 / 1.3)\) \\
(\(\mathrm{c}=\)) \(50\left({ }^{\circ}\right)\) \\
single straight ray reflected downwards \\
from water surface; \\
angle correct by eye;
\end{tabular} \& \begin{tabular}{l}
allow ideas if clear from diagram \\
allow TIR for total internal reflection \\
allow rearrangements and mixture of symbols and words \\
allow 50.3, 50.28... \\
any ray above water surface \\
scores zero
\end{tabular} \& 1

3
3
2

\hline
\end{tabular}

(b)	attempted use of $v^{2}=u^{2}+(2 \times a \times s)$; correct substitution; rearrangement of formula / evaluation of v^{2}; evaluation of v; e.g. $\begin{aligned} & v^{2}=u^{2}+(2 \times a \times s) ; \\ & v^{2}=0.45^{2}+(2 \times 3.4 \times 2.0) ; \\ & v=\sqrt{ }\left(0.45^{2}+(2 \times 3.4 \times 2.0)\right) \quad \text { OR } v^{2}=13.8 \\ & (v=3.7(\mathrm{~m} / \mathrm{s}) \end{aligned}$	accept answers in terms of GPE lost = KE gained, whatever candidate chooses for mass can be implied from calculation reject if contradicted by another irrelevant formula and no further working seen allow if 13.8 seen allow 3.72, 3.715...	4
(c)	any one from: MP1. Mars has a smaller mass; MP2. Mars has a lower density; MP3. Mars has a smaller (iron rich) core;	allow RA allow Mars is less massive	1

Question number	Answer	Notes	Marks
10 (a)	```use of voltage = current \times resistance; calculation of voltage across 240 ohm resistor (2.88 V); idea that voltages of two resistors in series adds up to supply voltage; evaluation of voltage across R; e.g. V = I }\times V240}=(0.012\times240=)2.88(V V (}\mp@subsup{V}{R}{}=)6.3(V```	allow rearrangements and standard symbols calculate total resistance of circuit (767 Ω) evaluation of resistance of R (527 Ω) evaluation of voltage across R (using $\mathrm{V}=\mathrm{IR}$) allow 2.9 (V) allow 9.2-2.88 or $\mathrm{V}+2.88=9.2$ allow 6.32 (V) if mA not converted to A and 2880 seen then award 2 marks max.	4
(b) (i) (ii) (iii)	any three from: MP1. coil produces a magnetic field; MP2. (which) interacts with the magnetic field of the (permanent) magnet; MP3. producing a force acting on the coil; MP4. opposite forces on either side of coil; MP5. coil rotates / turns; vertical arrow UP (on wire CD); any three from: MP1. more turns on the coil; MP2. stronger (permanent) magnet; MP3. add an iron core; MP4. producing a larger force (for the same current); MP5. use of a longer pointer; MP6. use of a weaker return spring; MP7. producing a greater movement at the end of the pointer (for the same current);	allow coil becomes an electromagnet allow one side is pushed up and the other is pushed down allow coil spins, pointer moves (to the left) allow "more coils" allow method to increase field strength e.g. moving magnets closer together allow producing the same force for a smaller current allow same movement for a smaller current	3

Total for Question 10 = 11 marks

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 11 (a) \& \begin{tabular}{l}
conversion of cm to m ; \\
substitution into given formula; evaluation; \\
e.g. \\
\(3.8 \mathrm{~cm}=0.038\) \\
pressure difference \(=0.038 \times 1.3 \times 10^{4} \times 10\) \\
(pressure difference \(=\)) \(4900(\mathrm{~Pa})\)
\end{tabular} \& \begin{tabular}{l}
seen anywhere in working \\
-1 for POT error 494000 gains 2 marks \\
allow 4940 (Pa) \\
allow \\
4800, 4840, 4846, \\
4841 (Pa) for use of \(\mathrm{g}=9.8 / 9.81\)
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
any three from: \\
MP1. particles have more energy in their kinetic store / particles speed up; \\
MP2. \{more frequent collisions / more collisions per second\} with the walls of the tube; \\
MP3. each collision with the wall is harder; \\
MP4. increasing the force (on the walls of the container); \\
conversion of temperatures to kelvin; \\
substitution; \\
rearrangement; \\
evaluation; \\
e.g.
\[
\begin{aligned}
\& \mathrm{T}_{1}=289 \mathrm{~K}, \mathrm{~T}_{2}=305 \mathrm{~K} \\
\& 9.95 \times 10^{4} / 289=\mathrm{p}_{2}=305 \\
\& \mathrm{p}_{2}=9.95 \times 10^{4} \times 305 / 289 \\
\& \left(\mathrm{p}_{2}=1.1 \times 10^{5}(\mathrm{~Pa})\right.
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
allow particles have more KE allow particles collide more often with walls ignore collisions with each other allow 'greater momentum change' \\
not converting to kelvin giving 199000 (Pa) gains 2 marks max. \\
allow \(1.05 \times 10^{5}(\mathrm{~Pa})\), 105008.65... (Pa)
\end{tabular} \& 3

4

\hline
\end{tabular}

Question number	Answer	Notes	Marks
12 (a)	```substitution into GPE = mass }\timesg\times\mathrm{ height; at least one quantity correctly converted to SI units; correct evaluation; e.g. GPE = 0.580 × 10 < 0.92 mass=0.580(kg) OR height =0.92(m) (GPE =) 5.3(J)```	allow substitution with no unit conversions allow $g=9.8,9.81$ allow 5.2, 5.34, 5.336, 5.23...	3
(b)	any four from: MP1. mention of energy being transferred mechanically at any stage in the response; MP2. (before it is dropped) dough initially has energy in its gravitational store (and no energy in its kinetic store); MP3. (just before it hits the floor) energy is in the dough's kinetic store (and less energy in its gravitational store); MP4. (as the dough falls / after the dough has hit the floor) the thermal store of the air / floor / surroundings has increased; MP5. (after the dough has hit the floor) the thermal/elastic store of the dough has increased (and the kinetic store of the dough is zero); MP6. energy has been transferred to the surroundings (mechanically and) by radiation;	condone the ball initially having GPE condone energy transferred to KE condone energy transferred to heat energy of the surroundings ignore references to sound energy condone energy transferred to elastic/heat energy of the dough	4

Total for Question $12=7$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

